60w+4w^2=396

Simple and best practice solution for 60w+4w^2=396 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 60w+4w^2=396 equation:



60w+4w^2=396
We move all terms to the left:
60w+4w^2-(396)=0
a = 4; b = 60; c = -396;
Δ = b2-4ac
Δ = 602-4·4·(-396)
Δ = 9936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9936}=\sqrt{144*69}=\sqrt{144}*\sqrt{69}=12\sqrt{69}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-12\sqrt{69}}{2*4}=\frac{-60-12\sqrt{69}}{8} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+12\sqrt{69}}{2*4}=\frac{-60+12\sqrt{69}}{8} $

See similar equations:

| (3x+34)=180 | | 180=5x-14+x+32+3x+2 | | W=32-0.05x | | (3x+34)+(5x-16)=180 | | -8=2/3x-2 | | 1450x=1450x+1076 | | 14j-13j=16 | | 30=8+4(z-2) | | 2(f-4)+2-f=-4 | | 0.5x+5=4 | | -90=-70x | | -10=-10+3a | | x/5x+9=x-23* | | 2414=34(p+10) | | S+50+4s+75=180 | | -3(2c+4)=8c+2 | | 5(1+4m)-2=13 | | 5x-3/2-2=x+4/5 | | 4p+8=180 | | -16+14y=17y+17 | | 8/45-2y=-28 | | 24b2=96b | | -4n-3=-91 | | 6(x-83)=24 | | 4100=41(p+25) | | 9(x-89)=54 | | P+13+p-5+2p=180 | | -4x+4+-3+-3=-x+3+4+-3 | | 1=3c | | 4x+74x=1 | | 4.p/15=9 | | 4x+8-5=-21 |

Equations solver categories